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• What we are trying to solve for

• Overview of solution

• Working towards sustainable maintainance

• Key Learnings

• Q&A
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Agenda
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Forecasting

(It’s difficult business)
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Examples of typical forecasts in CPG

Demand Volume

Trade investment

Supply Chain 
costs

Market Growth

Price Growth

Market Share

Business Group

Category

Brand

SKU

Country

Channel

Customer

Various levels of granularity

External forecastsInternal forecasts
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• Very expensive to generate at scale

• Also expensive to update frequently

• Inconsistent set of assumptions

• Human Bias

• Historical data availability

• Forecast dependencies & compounding errors

• Solution maintainance

• Explainability

Manual / Expert forecasts Automated / Machine Learning forecasts
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The challenges of forecasting 
Either approach will have its own set of challenges
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Easy experimentation Deployment process Sustainable maintenance
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Key Technical Requirements
For a Data Science team developing ML forecasting solutions

images: Flaticon.com
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Developing a  
framework for 
predictive ML
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Overview of framework
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Data preprocessing

Add flow chart

Transformation Function Name Parameters Type

One Hot Encode transform_OHE - Categorical

Simple Imputer transform_imputer - Numeric

Standard Scaler transform_standardScaler - Numeric

Power Transform transform_powerTransform - Numeric

Select Columns transform_selectCols Cols ->List Feature Select

Select K Best transform_selectKBest k->int Feature Select

Recursive Feature Elimination transform_RFE n_feat->int Feature Select

RFE Cross Validation transform_RFECV - Feature Select

Correlation Filter transform_correlationFilter Thresh->float Feature Select

Elastic Net Filter transform_ENFilter Thresh->float Feature Select

PCA transform_PCA - Dimension Reduction

For Feature Engineering
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Model Training
Time Series  ML Regression Library
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Model Training
Time Series Forecasting Library
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Model Training
Walk forward validation
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Model Deployment
Deploy through mlflow in Databricks
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Model Inference
Load prod models and predict
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Model Explainability
SHAP library

SHAPley additive explanations

• Model agnostic 

• Local & Global interpretability
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Working towards 
sustainable 
maintainance
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Modularisation
Modularising code to enable easier testing, refactoring and boost reusability 

Organise in library 
functions & classes Labs for development
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Parallelisation
Parallelising using 

Spark and applyInPandas

Parameterisation
Use of config files, widgets, 

metadata files
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Code Management & Testing

Code deployment

Model deployment

ML processes
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ML Monitoring

Model Performance

Prediction 
Accuracy

• Accuracy of 
the live 
predictions

• Comparison 
with evaluation 
accuracy

Prediction Bias

• Systematic 
over or under 
predicting 

Data Input

Quality

• Completeness
• Data Types
• Duplicates
• Outliers

Drift

• Change in 
distribution

• Change in 
trend

• Seasonal drift

Feature 
Importance

• Changes in 
feature 
importance as 
captured by 
Shap
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Key Learnings
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Key Business Learnings

Measure 
improvements vs a 
business process

10% reduction in MAPE, 
100 hours in savings vs 

manual forecast

Work towards a 
transparent and 

explainable solution

Create trust and user 
confidence to increase adoption 

of solution

Invest more time in 
understanding business 

requirements

Work with a small stakeholder 
team to fully scope out project, 

PoC vs future releases

images: Flaticon.com
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Key Technical Learnings

Measure improvements 
vs a benchmark

50% reduction in PoC 
completion time

Build for change and with 
maintenance in mind

To be able to balance together 
with improvements and 

innovation

Evaluate requirements 
against effort and cost

Provide a transparent view on 
time and cost to prioritise and 

challenge based on RoI

images: Flaticon.com
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THANK YOU

Q & A
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